Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Caixia Yin,^a Fangjun Huo,^b Fei Gao^a[‡] and Pin Yang^a*

^aInstitute of Molecular Science, Chemical Biology and Molecular Engineering, Laboratory of the Education Ministry, University of Shanxi Taiyuan, Shanxi 030006, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, University of Shanxi Taiyuan, Shanxi 030006, People's Republic of China

‡ Additional correspondence author; e-mail: feigao@sxu.edu.cn

Correspondence e-mail: yangpin@sxu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.004 Å R factor = 0.063 wR factor = 0.176 Data-to-parameter ratio = 13.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,6-Bis(hydroxymethyl)-4-methylphenol benzylidene 1,2-acetal

The title compound, $C_{16}H_{16}O_3$, is an intermediate compound in the synthesis of polypodal binucleating ligands which are suited for the preparation of dinuclear complexes, employing two non-equivalent complexation sites. There are two weak intramolecular $C-H \cdots O$ hydrogen bonds generating a ring of pattern S(5), and an intermolecular $O-H \cdots O$ hydrogen bond.

Comment

The title compound, (I), is an intermediate compound in the synthesis of polypodal binucleating ligands which are suited for the preparation of dinuclear complexes employing two non-equivalent complexation sites (Belle *et al.*, 1994).

Selected geometric parameters of (I) are listed in Table 1. The molecular conformation and crystal packing are illustrated in Figs. 1 and 2. The molecule has two weak intramolecular C-H···O hydrogen bonds (Pálinkó, 1999), with C···O distances of 2.777 (4) and 2.709 (3) Å, generating an S(5) pattern, with the hydroxy O atoms as two acceptors and two aromatic CH groups acting as donors (Bernstein *et al.*,

Figure 1

A view of the molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Two molecules are shown, with the pair of hydrogen bonds (dashed lines) linking them across an inversion centre.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 30 January 2004 Accepted 20 February 2004 Online 28 February 2004

organic papers

The packing of the title compound, viewed down the b axis.

1995). The pairs of enantiomers related by the inversion centre are linked by two $O-H \cdots O$ hydrogen bonds between their OH groups (Fig. 1, Table 2). Specifically, the $O-H \cdots O(\frac{1}{2} - x, \frac{3}{2} - y, -z)$ hydrogen bond, with a distance of 2.721 (4) Å (Table 2), is formed. This generates a ring with motif $R_1^1(4)$ (Bernstein *et al.*, 1995). The lamellar structure is dominated by van der Waals interactions in the packing of the molecules. Within the molecule, atom C10 deviates by 0.0853 (4) Å from the C11/C12/C13/C14/C15/C16 plane. Atoms O2 and O3 deviate by 0.7762 (4) and 0.2811 (5), respectively, from the C11/C12/C13/C14/C15/C16 plane; the offsets are 0.0116 (3) and 0.4233 (4), respectively, from the C1/C2/C3/C4/C5/C6 plane.

Experimental

The title compound was synthesized according to a literature method (Belle *et al.*, 1994). The compound (100 mg) was dissolved in hexane/ ethyl acetate (8:1, 10 ml) and the solution was allowed to evaporate slowly at room temperature over a period of several months. Colourless crystals, suitable for X-ray crystallography studies, were formed. ¹H NMR (CDCl₃, δ , p.p.m.): 2.26 (*s*, 3H, CH₃), 4.65–5.20 (*dd*, 4H, CH₂), 6.80–7.90 (*m*, 7H, ArH), 6.01 (*s*, 1H, OH); m.p. 368 K.

Crystal data

$D_x = 1.307 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 14967
reflections
$\theta = 2.4-22.6^{\circ}$
$\mu = 0.09 \text{ mm}^{-1}$
T = 298 (2) K
Rod, colourless
$0.60\times0.30\times0.10~\mathrm{mm}$

Data collection

Bruker SMART 1K CCD area- detector diffractometer ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) <i>T</i> _{min} = 0.948, <i>T</i> _{max} = 0.991 5974 measured reflections		2287 independent reflections 1542 reflections with $I > 2\sigma(I)$ $R_{int} = 0.087$ $\theta_{max} = 25.0^{\circ}$ $h = -21 \rightarrow 27$ $k = -5 \rightarrow 5$ $l = -27 \rightarrow 24$		
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.177$ S = 1.04 2287 reflections 173 parameters		H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0889P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$		
Table 1 Selected geometric para	meters (Å, °)			
O2-C1	1.392 (3)	C2-C9	1.505	
O2-C10	1.433 (3)	C10-C11	1.502	
O3-C10	1.379 (3)	C4-C7	1.502	

02-C10	1.433 (3) C10-C11		1.502 (3)
O3-C10	1.379 (3)	C4-C7	1.502 (4)
O3-C9	1.431 (3)	C8-O1	1.418 (3)
C6-C8	1.500 (4)		
C1-O2-C10	112.32 (18)	O3-C10-O2	111.1 (2)
C10-O3-C9	110.93 (19)	O3-C10-C11	110.0 (2)
C5-C6-C8	123.0 (2)	O2-C10-C11	108.4 (2)
C1-C6-C8	119.7 (2)	C5-C4-C7	120.7 (2)
C2-C1-O2	121.1 (2)	C3-C4-C7	121.4 (3)
O2-C1-C6	117.0 (2)	O3-C9-C2	110.3 (2)
C1-C2-C9	120.0 (2)	O1-C8-C6	111.4 (2)
C3-C2-C9	121.1 (2)		

(3)

Table 2Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1-H1···O1 ⁱ	0.82	2.11	2.721 (4)	132
C5−H5···O1	0.93	2.42	2.777 (4)	102
C16−H16···O3	0.93	2.38	2.709 (3)	101

Symmetry code: (i) $\frac{1}{2} - x, \frac{3}{2} - y, -z$.

All H atoms on Csp^3 atoms were treated as riding, with C–H = 0.96–0.98 Å and $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C})$ of the parent atom. The H atoms on Csp^2 atoms were treated as riding, with C–H = 0.93 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$. The hydroxyl H atom was obtained from a difference Fourier map and was constrained to maintain a bond distance of 0.82 Å and $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm O})$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge the financial support of this work by the National Natural Science Foundation of China (grant No: 20171031 to PY), and the Shanxi Provincial Natural Science Foundation.

References

- Belle, C., Gellon, G., Scheer, C. & Pierre, J. L. (1994). *Tetrahedron Lett.* 35, 7019–7022.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (1999). *SHELXTL*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2000). *SMART* (Version 5.0) and *SAINT* (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

Pálinkó, I. (1999). Acta Cryst. B55, 216-220.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.